Quantifiers like many, some or all are omnipresent in language. However, comprehending quantifiers involves various skills, including linguistic and numerical abilities. For instance, if a person confesses that she ate all of the cookies, semantic knowledge of the term all is needed to infer that none of the cookies will be left for you. A subset of quantifiers also refers to specific quantities. If a person confesses she ate both of the cookies, you know that she ate exactly two (not three, four, or any other number). Thus, in order to successfully comprehend quantifiers, one has to know their semantic and pragmatic restrictions as well as their quantificational meanings (i.e., the specific quantity or number(-range) that is denoted by a quantifier). Although quantifier comprehension seems to involve both linguistic and numerical processes, the extent to which both factors play a role is controversial. Whereas some researchers have stressed the importance of language abilities in quantifier comprehension, others have considered numerical skills more relevant. In my lecture, I seek to address this controversy by presenting data of typically and atypically developing children’s patterns of quantifier comprehension. I also explore links between children’s ability to comprehend quantifiers as well as their linguistic and numerical skills. The goal of the talk is to determine the specific contributions of linguistic and number skills regarding quantifier comprehension, thereby informing theories of quantifier representations more broadly.